Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(3): 453-461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38634001

RESUMO

Vitamin B12 is a complex compound synthesized by microorganisms. The industrial production of vitamin B12 relies on specific microbial fermentation processes. E. coli has been utilized as a host for the de novo biosynthesis of vitamin B12, incorporating approximately 30 heterologous genes. However, a metabolic imbalance in the intricate pathway significantly limits vitamin B12 production. In this study, we employed multivariate modular metabolic engineering to enhance vitamin B12 production in E. coli by manipulating two modules comprising a total of 10 genes within the vitamin B12 biosynthetic pathway. These two modules were integrated into the chromosome of a chassis cell, regulated by T7, J23119, and J23106 promoters to achieve combinatorial pathway optimization. The highest vitamin B12 titer was attained by engineering the two modules controlled by J23119 and T7 promoters. The inclusion of yeast powder to the fermentation medium increased the vitamin B12 titer to 1.52 mg/L. This enhancement was attributed to the effect of yeast powder on elevating the oxygen transfer rate and augmenting the strain's isopropyl-ß-d-1-thiogalactopyranoside (IPTG) tolerance. Ultimately, vitamin B12 titer of 2.89 mg/L was achieved through scaled-up fermentation in a 5-liter fermenter. The strategies reported herein will expedite the development of industry-scale vitamin B12 production utilizing E. coli.

2.
Nat Commun ; 14(1): 5177, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620358

RESUMO

Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 µg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.


Assuntos
Vitamina B 12 , Vitaminas , Animais , Sistema Livre de Células , Ácido Aminolevulínico , Biocatálise
3.
Microb Cell Fact ; 19(1): 118, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487216

RESUMO

BACKGROUND: Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B12. The introduction of a heterologous de novo vitamin B12 biosynthesis pathway in Escherichia coli offers an alternative approach for its production. Although E. coli avoids major limitations that currently faced by industrial producers of vitamin B12, such as long growth cycles, the insufficient supply of hydrogenobyrinic acid restricts industrial vitamin B12 production. RESULTS: By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L-1, respectively. Combined fine-tuning of the heme and siroheme biosynthetic pathways enhanced the hydrogenobyrinic acid titer to 22.57 mg L-1, representing a remarkable increase of 1356.13% compared with the original strain FH215-HBA. CONCLUSIONS: Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L-1 in E. coli. This lays the foundation for high-yield production of vitamin B12 in E. coli and will hopefully accelerate its industrial production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Engenharia Metabólica , Uroporfirinas/biossíntese , Vitamina B 12/biossíntese , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Óperon
4.
Bioprocess Biosyst Eng ; 43(10): 1735-1745, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399750

RESUMO

Vitamin B12 is a crucial fine chemical that is widely used in the pharmaceutical, food and chemical industries, and its production solely dependents on microbial fermentation. We previously constructed an artificial vitamin B12 biosynthesis pathway in Escherichia coli, but the yield of the engineered strains was low. Here, we removed metabolic bottlenecks of the vitamin B12 biosynthesis pathway in engineered E. coli strains. After screening cobB genes from different sources, optimizing the expression of cobN and customizing the ribosome binding sites of cobS and cobT, the vitamin B12 yield increased to 152.29 µg/g dry cell weight (DCW). Optimization of the downstream module, which converts co(II)byrinic acid a,c-diamide into adenosylcobinamide phosphate, elevated the vitamin B12 yield to 249.04 µg/g DCW. A comparison of a variety of equivalent components indicated that glucose and corn steep liquor are optimal carbon and nitrogen sources, respectively. Finally, an orthogonal array design was applied to determine the optimal concentrations of glucose and nitrogen sources including corn steep liquor and yeast extract, through which a vitamin B12 yield of 530.29 µg/g DCW was obtained. The metabolic modifications and optimization of fermentation conditions achieved in this study offer a basis for further improving vitamin B12 production in E. coli and will hopefully accelerate its industrial application.


Assuntos
Vias Biossintéticas , Meios de Cultura/química , Escherichia coli , Engenharia Metabólica , Vitamina B 12 , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Vitamina B 12/biossíntese , Vitamina B 12/genética
5.
Front Cell Dev Biol ; 8: 622103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614630

RESUMO

The class II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, characterized by a single effector protein, can be further subdivided into types II, V, and VI. The application of the type II CRISPR effector protein Cas9 as a sequence-specific nuclease in gene editing has revolutionized this field. Similarly, Cas13 as the effector protein of type VI provides a convenient tool for RNA manipulation. Additionally, the type V CRISPR-Cas system is another valuable resource with many subtypes and diverse functions. In this review, we summarize all the subtypes of the type V family that have been identified so far. According to the functions currently displayed by the type V family, we attempt to introduce the functional principle, current application status, and development prospects in biotechnology for all major members.

6.
Nat Commun ; 9(1): 4917, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464241

RESUMO

The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g-1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Vitamina B 12/biossíntese , Escherichia coli/genética , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA